

Series EF1GH/2

SET~1

रोल नं. Roll No. प्रश्न-पत्र कोड Q.P. Code 65/2/1

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे अधिकतम अंक : 80
Time allowed : 3 hours Maximum Marks : 80

नोट / NOTE :

- (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।

 Please check that this question paper contains 23 printed pages.
- (ii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
 - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।
 - Please check that this question paper contains 38 questions.
- (iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
 Please write down the serial number of the question in the answerbook before attempting it.
- (v) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

65/2/1

254 A

~~~

Page 1





## सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पिढ़ए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 38 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क. ख. ग. घ** तथा **ङ ।**
- (iii) खण्ड-क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय तथा प्रश्न संख्या 19 एवं 20 अभिकथन एवं कारण आधारित **एक-एक** अंक के प्रश्न हैं।
- (iv) **खण्ड-ख** में प्रश्न संख्या 21 से 25 तक अति लघु-उत्तरीय (VSA) प्रकार के **दो-दो** अंकों के प्रश्न हैं।
- (v)  $uvs-\eta$  में प्रश्न संख्या  $uvs-\eta$  से  $uvs-\eta$  ती  $uvs-\eta$  संख्या  $uvs-\eta$  सं
- (vi) **खण्ड-घ** में प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (vii) **खण्ड-ङ** में प्रश्न संख्या **36** से **38** तक अध्ययन/केस/अनुच्छेद/एकीकृत इकाइयाँ मूल्यांकन आधारित **चार-चार** अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड-**ख** के 2 प्रश्नों में, खण्ड-**ग** के 3 प्रश्नों में, खण्ड-**घ** के 2 प्रश्नों में तथा खण्ड-**ड** के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है।

# खण्ड – क (बहुविकल्पीय प्रश्न) प्रत्येक प्रश्न का 1 अंक है।

1. यदि  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  है , तो  $A^{2023}$  बराबर है :

1

(A)  $\left[ \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$ 

(B)  $\begin{bmatrix} 0 & 2023 \\ 0 & 0 \end{bmatrix}$ 

(C)  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 

(D)  $\begin{bmatrix} 2023 & 0 \\ 0 & 2023 \end{bmatrix}$ 

65/2/1

2222



#### **General Instructions:**

Read the following instructions very carefully and follow them:

- This Question Paper contains 38 questions. All questions are compulsory.
- (ii) Question paper is divided into FIVE Sections Section A, B, C, D and E.
- (iii) In Section A Question Nos. 1 to 18 are Multiple Choice Questions (MCQs) and Question Nos. 19 & 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B Question Nos. 21 to 25 are Very Short Answer (VSA) type questions of 2 marks each.
- In Section C Question Nos. 26 to 31 are Short Answer (SA) type questions, carrying 3 marks each.
- (vi) In Section D Question Nos. 32 to 35 are Long Answer (LA) type questions carrying 5 marks each.
- (vii) In **Section E** Question Nos. **36** to **38** are source based/case based/passage based/integrated units of assessment questions carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **NOT** allowed.

# SECTION - A (Multiple Choice Questions) Each question carries 1 mark.

1. If 
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, then  $A^{2023}$  is equal to

1

(A) 
$$\left[ \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

(B) 
$$\begin{bmatrix} 0 & 2023 \\ 0 & 0 \end{bmatrix}$$

(C) 
$$\left[ \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

(D) 
$$\begin{bmatrix} 2023 & 0 \\ 0 & 2023 \end{bmatrix}$$

65/2/1

Page 3

- 2. यदि  $\begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix}$  = P + Q है, जहाँ P एक सममित आव्यूह है तथा Q एक विषम सममित आव्यूह है, तो Q बराबर है :
  - (A)  $\begin{bmatrix} 2 & 5/2 \\ 5/2 & 4 \end{bmatrix}$

(B)  $\begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix}$ 

(C)  $\begin{bmatrix} 0 & 5/2 \\ -5/2 & 0 \end{bmatrix}$ 

- (D)  $\begin{bmatrix} 2 & -5/2 \\ 5/2 & 4 \end{bmatrix}$
- 3. यदि  $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1 \end{bmatrix}$  एक व्युत्क्रमणीय आव्यूह है तथा  $a \in A$  है, तो समुच्चय A बराबर है : 1
  - (A)  $\mathbb{R}$

(B) {0}

(C)  $\{4\}$ 

- (D)  $\mathbb{R} \{4\}$
- 4. यदि |A|=|kA| है, जहाँ A कोटि 2 का वर्ग आव्यूह है, तो k के सभी संभव मानों का योगफल है : 1
  - (A) 1

(B) -1

(C) 2

- (D) 0
- 5. यदि  $\frac{d}{dx}[f(x)] = ax + b$  है तथा f(0) = 0 है, तो f(x) बराबर है :

1

1

 $(A) \quad a + b$ 

(B)  $\frac{ax^2}{2} + bx$ 

 $(C) \quad \frac{ax^2}{2} + bx + c$ 

- (D) b
- 6. अवकल समीकरण  $\sin\,x + \cos\left(\frac{\mathrm{d}\mathrm{y}}{\mathrm{d}x}\right) = \mathrm{y}^2$  की घात है :

1

(A) 2

(B) 1

(C) परिभाषित नहीं है।

(D) 0

65/2/1





2. If  $\begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix}$  = P + Q, where P is a symmetric and Q is a skew symmetric matrix, then Q is equal to

1

(A)  $\begin{bmatrix} 2 & 5/2 \\ 5/2 & 4 \end{bmatrix}$ 

(B)  $\begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix}$ 

(C)  $\begin{bmatrix} 0 & 5/2 \\ -5/2 & 0 \end{bmatrix}$ 

- (D)  $\begin{bmatrix} 2 & -5/2 \\ 5/2 & 4 \end{bmatrix}$
- 3. If  $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1 \end{bmatrix}$  is non-singular matrix and  $a \in A$ , then the set A is

1

(A) R

(B) {0}

 $(C) \{4\}$ 

- (D)  $\mathbb{R} \{4\}$
- If |A| = |kA|, where A is a square matrix of order 2, then sum of all possible values of k is

1

(A) 1

(B) -1

(C) 2

- $(D) \quad 0$
- If  $\frac{d}{dx}[f(x)] = ax + b$  and f(0) = 0, then f(x) is equal to

1

(A) a + b

(B)  $\frac{ax^2}{2} + bx$ 

(C)  $\frac{ax^2}{2} + bx + c$ 

- (D) b
- Degree of the differential equation  $\sin x + \cos \left(\frac{dy}{dx}\right) = y^2$  is 6.

1

(A) 2

(B) 1

(C) not defined

 $(D) \quad 0$ 

65/2/1



Page 5



- 7. अवकल समीकरण  $(1-y^2)\frac{\mathrm{d}x}{\mathrm{d}y} + yx = \mathrm{a}y, \ (-1 < y < 1)$  का समाकलन गुणक है :
  - (A)  $\frac{1}{y^2 1}$

 $(B) \quad \frac{1}{\sqrt{y^2 - 1}}$ 

 $(C) \quad \frac{1}{1-y^2}$ 

- $(D) \quad \frac{1}{\sqrt{1-y^2}}$
- 8. यदि P तथा Q के निर्देशांक क्रमशः (2, 1, -1) तथा (4, 4, -7) हैं, तो  $\overrightarrow{PQ}$  के अनुदिश मात्रक सिंदश है :
  - (A)  $2\hat{i} + 3\hat{j} 6\hat{k}$

 $(B) \quad -2 \overset{\wedge}{i} - 3 \overset{\wedge}{j} + 6 \overset{\wedge}{k}$ 

(C)  $\frac{-2\hat{i}}{7} - \frac{3\hat{j}}{7} + \frac{6\hat{k}}{7}$ 

- (D)  $\frac{2\hat{i}}{7} + \frac{3\hat{j}}{7} \frac{6\hat{k}}{7}$
- 9. रेखाखण्ड AB के मध्यिबंदु का स्थिति सिदश  $3\hat{i}+2\hat{j}-3\hat{k}$  है । यदि बिंदु A का स्थिति सिदश  $2\hat{i}+3\hat{j}-4\hat{k}$  है, तो बिंदु B का स्थिति सिदश है :
  - (A)  $\frac{5\hat{i}}{2} + \frac{5\hat{j}}{2} \frac{7\hat{k}}{2}$

(B)  $4\hat{i} + \hat{j} - 2\hat{k}$ 

(C)  $5\hat{i} + 5\hat{j} - 7\hat{k}$ 

- (D)  $\frac{\hat{\mathbf{i}}}{2} \frac{\hat{\mathbf{j}}}{2} + \frac{\hat{\mathbf{k}}}{2}$
- $10.\quad$ सदिश  $2\hat{i}+3\hat{j}$  का सदिश  $3\hat{i}-2\hat{j}$  पर प्रक्षेप है :

1

1

1

(A) 0

(B) 12

(C)  $\frac{12}{\sqrt{13}}$ 

- (D)  $\frac{-12}{\sqrt{13}}$
- 11. बिंदु  $(1,\,1,\,1)$  से होकर जाने वाली तथा z-अक्ष के समांतर रेखा का समीकरण है :
  - (A)  $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$

(B)  $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$ 

(C)  $\frac{x}{0} = \frac{y}{0} = \frac{z-1}{1}$ 

(D)  $\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{1}$ 

65/2/1

 $\sim\sim\sim$ 





The integrating factor of the differential equation

$$(1 - y^2) \frac{dx}{dy} + yx = ay$$
,  $(-1 < y < 1)$  is

1

1

(A)  $\frac{1}{v^2 - 1}$ 

(B)  $\frac{1}{\sqrt{v^2-1}}$ 

(C)  $\frac{1}{1 - v^2}$ 

- (D)  $\frac{1}{\sqrt{1-v^2}}$
- Unit vector along  $\overrightarrow{PQ}$ , where coordinates of P and Q respectively are (2, 1, -1) and (4, 4, -7), is

  - (A)  $2\hat{i} + 3\hat{j} 6\hat{k}$

(B)  $-2\hat{i} - 3\hat{j} + 6\hat{k}$ 

(C)  $\frac{-2\hat{i}}{7} - \frac{3\hat{j}}{7} + \frac{6\hat{k}}{7}$ 

- (D)  $\frac{2\hat{i}}{7} + \frac{3\hat{j}}{7} \frac{6\hat{k}}{7}$
- Position vector of the mid-point of line segment AB is  $3\hat{i} + 2\hat{j} 3\hat{k}$ . If 9. position vector of the point A is  $2\hat{i} + 3\hat{j} - 4\hat{k}$ , then position vector of the



(A)  $\frac{5\hat{i}}{2} + \frac{5\hat{j}}{2} - \frac{7\hat{k}}{2}$ 

(B)  $4\hat{i} + \hat{i} - 2\hat{k}$ 

(C)  $5\hat{i} + 5\hat{j} - 7\hat{k}$ 

- (D)  $\frac{\hat{i}}{2} \frac{\hat{j}}{2} + \frac{\hat{k}}{2}$
- 10. Projection of vector  $2\hat{i} + 3\hat{j}$  on the vector  $3\hat{i} 2\hat{j}$  is

1

 $(A) \quad 0$ 

(B) 12

(C)  $\frac{12}{\sqrt{13}}$ 

- (D)  $\frac{-12}{\sqrt{13}}$
- Equation of a line passing through point (1, 1, 1) and parallel to z-axis is 1
  - (A)  $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$

(B)  $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$ 

(C)  $\frac{x}{0} = \frac{y}{0} = \frac{z-1}{1}$ 

(D)  $\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{1}$ 

65/2/1

Page 7



1

(A)  $\frac{1}{9}$ 

(B)  $\frac{4}{9}$ 

(C)  $\frac{1}{18}$ 

- (D)  $\frac{1}{2}$
- 13. x के सापेक्ष  $\frac{\tan x 1}{\tan x + 1}$  का प्रतिअवकलज है :

1

- (A)  $\sec^2\left(\frac{\pi}{4} x\right) + c$
- (B)  $-\sec^2\left(\frac{\pi}{4}-x\right)+c$
- (C)  $\log \left| \sec \left( \frac{\pi}{4} x \right) \right| + c$
- (D)  $-\log \left| \sec \left( \frac{\pi}{4} x \right) \right| + c$
- 14. यदि एक  $\Delta ABC$  के शीर्ष  $(a,\,b),\,(c,\,d)$  तथा  $(e,\,f)$  हैं तथा  $\Delta ABC$  का क्षेत्रफल  $\Delta$  द्वारा निरूपित

िकया जाता है, तो  $\begin{vmatrix} a & c & e \\ b & d & f \\ 1 & 1 & 1 \end{vmatrix}$  बराबर है :

1

(A)  $2\Delta^2$ 

(B)  $4\Delta^2$ 

(C) 2Δ

(D) 4Δ

15. फलन f(x) = x |x|, x = 0 पर

1

- (A) संतत तथा अवकलनीय है।
- (B) संतत है, परन्तु अवकलनीय नहीं है।
- (C) अवकलनीय है, परन्तु संतत नहीं है।
- (D) न संतत और न ही अवकलनीय है।
- 16. यदि  $\tan\left(\frac{x+y}{x-y}\right) = \mathbf{k}$  है, तो  $\frac{\mathrm{d}y}{\mathrm{d}x}$  बराबर है :

1

(A)  $\frac{-y}{x}$ 

(B)  $\frac{y}{r}$ 

(C)  $\sec^2\left(\frac{y}{x}\right)$ 

(D)  $-\sec^2\left(\frac{y}{r}\right)$ 

65/2/1

 $\sim\sim\sim$ 



If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is:

1

(A)  $\frac{1}{9}$ 

(C)  $\frac{1}{18}$ 

- (D)  $\frac{1}{2}$
- 13. Anti-derivative of  $\frac{\tan x 1}{\tan x + 1}$  with respect to *x* is

1

- (A)  $\sec^2\left(\frac{\pi}{4} x\right) + c$
- (B)  $-\sec^2\left(\frac{\pi}{4}-x\right)+c$
- (C)  $\log \left| \sec \left( \frac{\pi}{4} x \right) \right| + c$
- (D)  $-\log \left| \sec \left( \frac{\pi}{4} x \right) \right| + c$
- If (a, b), (c, d) and (e, f) are the vertices of  $\triangle ABC$  and  $\triangle ABC$  and  $\triangle ABC$  are the area of
  - $\Delta ABC$ , then  $\left| \begin{array}{ccc} a & c & e \\ b & d & f \\ 1 & 1 & 1 \end{array} \right|^2$  is equal to

1

(A)  $2\Delta^2$ 

(C)  $2\Delta$ 

- (D)  $4\Delta$
- The function f(x) = x |x| is 15.

1

- continuous and differentiable at x = 0.
- continuous but not differentiable at x = 0.
- differentiable but not continuous at x = 0. (C)
- (D) neither differentiable nor continuous at x = 0.
- 16. If  $\tan \left( \frac{x+y}{x-y} \right) = k$ , then  $\frac{dy}{dx}$  is equal to

1

(A)  $\frac{-y}{x}$ 

(B)  $\frac{y}{x}$ 

(C)  $\sec^2\left(\frac{y}{x}\right)$ 

(D)  $-\sec^2\left(\frac{y}{r}\right)$ 

65/2/1



Page 9



17. एक रैखिक प्रोग्रामन समस्या के उद्देश्य फलन  $\mathbf{Z} = \mathbf{a}x + \mathbf{b}y$  का (4, 6) पर अधिकतम मान 42 है तथा (3, 2) पर न्यूनतम मान 19 है, तो निम्न में से कौन सा सत्य है ?

1

(A) a = 9, b = 1

(B) a = 5, b = 2

(C) a = 3, b = 5

- (D) a = 5, b = 3
- एक रैखिक प्रोग्रामन समस्या के सुसंगत क्षेत्र के शीर्ष बिंदु (0,4),(8,0) तथा  $\left(\frac{20}{3},\frac{4}{3}\right)$  हैं। यदि इसका उद्देश्य फलन Z=30x+24y है, तो (Z का अधिकतम मान -Z का न्यूनतम मान) बराबर है :

1

(A) 40

(B) 96

(C) 120

(D) 136

# अभिकथन – तर्क आधारित प्रश्न

प्रश्न संख्या 19 एवं 20 में एक अभिकथन (A) के बाद एक तर्क आधारित कथन (R) दिया है। प्रत्येक में निम्न चारों में से कोई एक सही विकल्प चुनिए:

- (A) तथा (R) दोनों सत्य हैं और कथन (R), कथन (A) की सही व्याख्या करता है।
- (A) तथा (R) दोनों सत्य हैं, परन्तु कथन (R), कथन (A) की सही व्याख्या नहीं करता है। (B)
- (C) (A) सत्य है, परन्तु (R) सत्य नहीं है।
- (D) (A) असत्य है तथा (R) सत्य है।
- **अभिकथन (A) :**  $(\cos^{-1} x)^2$  का अधिकतम मान  $\pi^2$  है ।

1

**तर्क (R) :**  $\cos^{-1}x$  की मुख्य मान शाखा का परिसर  $\left\lceil \frac{-\pi}{2}, \frac{\pi}{2} \right\rceil$  है।

20. **अभिकथन** (A) : यदि एक रेखा निर्देशांक अक्षों की धनात्मक दिशाओं से  $\alpha$ ,  $\beta$ ,  $\gamma$  के कोण बनाती है, तो  $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$  है। 1

तर्क (R) : एक रेखा के दिक कोसाइनों के वर्गों का योग 1 होता है।

65/2/1



- 17. The objective function Z = ax + by of an LPP has maximum value 42 at (4, 6) and minimum value 19 at (3, 2). Which of the following is true?
- 1

(A) a = 9, b = 1

(B) a = 5, b = 2

(C) a = 3, b = 5

- (D) a = 5, b = 3
- 18. The corner points of the feasible region of a linear programming problem are (0, 4), (8, 0) and  $\left(\frac{20}{3}, \frac{4}{3}\right)$ . If Z = 30x + 24y is the objective function, then (maximum value of Z minimum value of Z) is equal to
- 1

(A) 40

(B) 96

(C) 120

(D) 136

# ASSERTION-REASON BASED QUESTIONS

In the following questions 19 & 20, a statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices:

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true, but (R) is not the correct explanation of (A).
- (C) (A) is true, but (R) is false.
- (D) (A) is false, but (R) is true.
- 19. **Assertion (A)**: Maximum value of  $(\cos^{-1} x)^2$  is  $\pi^2$ .

1

1

**Reason (R)**: Range of the principal value branch of  $\cos^{-1}x$  is  $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ .

20. **Assertion (A)**: If a line makes angles  $\alpha$ ,  $\beta$ ,  $\gamma$  with positive direction of the coordinate axes, then  $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$ .

Reason (R): The sum of squares of the direction cosines of a line is 1.

65/2/1

 $\sim\sim\sim$ 

Page 11







#### खण्ड – ख

इस खण्ड में अति लघु-उत्तरीय (VSA) प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 2 अंक हैं।

21. (a) मान ज्ञात कीजिए : 
$$\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\pi\right) + \tan^{-1}\left(1\right)$$

#### अथवा

- (b)  $\cos^{-1} x$  का आलेख खींचिए जहाँ  $x \in [-1, 0]$  तथा इसका परिसर भी लिखिए ।
- 22. एक कण वक्र  $3y = ax^3 + 1$  की दिशा में इस प्रकार चल रहा है कि एक बिंदु जिसका x-निर्देशांक 1 है, पर y-निर्देशांक इसके x-निर्देशांक की दुगुनी दर से बदल रहा है । a का मान ज्ञात कीजिए ।
- 23. यदि  $\vec{a}$ ,  $\vec{b}$  तथा  $\vec{c}$  तीन ऐसे शून्येतर असमान सदिश हैं कि  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$  है, तो  $\vec{a}$  तथा  $\vec{b} \vec{c}$  के बीच का कोण ज्ञात कीजिए।
- 24. रेखा  $\frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{2}$  पर स्थित ऐसे बिंदुओं के निर्देशांक ज्ञात कीजिए, जिनकी मूल बिंदु से दूरी  $\sqrt{11}$  इकाई हो ।
- 25. (a) यदि  $y = \sqrt{ax + b}$  है, तो सिद्ध कीजिए कि  $y\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2 = 0$

#### अथवा

(b) यदि  $\mathbf{f}(x) = \begin{cases} \mathbf{a}x + \mathbf{b} & ; & 0 < x \le 1 \\ 2x^2 - x & ; & 1 < x < 2 \end{cases}$  द्वारा दिया गया फलन (0, 2) पर अवकलनीय है, तो  $\mathbf{a}$  तथा  $\mathbf{b}$  के मान ज्ञात कीजिए ।

#### खण्ड – ग

इस खण्ड में लघु-उत्तरीय (SA) प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 3 अंक हैं।

26. (a) मान ज्ञात कीजिए : 
$$\int\limits_{0}^{\pi/4} \log \left(1 + \tan x\right) \mathrm{d}x$$
 3

#### अथवा

(b) ज्ञात कीजिए : 
$$\int \frac{\mathrm{d}x}{\sqrt{\sin^3\!x\cos{(x-\alpha)}}}$$

65/2/1  $\sim\sim\sim$  Page 12

CLICK HERE >>>

 $\mathbf{2}$ 

 $\mathbf{2}$ 



#### SECTION - B

This section comprises Very Short Answer Type questions (VSA) of 2 marks each.

21. (a) Evaluate 
$$\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\pi\right) + \tan^{-1}(1)$$
.

OR

- (b) Draw the graph of  $\cos^{-1} x$ , where  $x \in [-1, 0]$ . Also, write its range. 2
- 22. A particle moves along the curve  $3y = ax^3 + 1$  such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.
- 23. If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are three non-zero unequal vectors such that  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ , then find the angle between  $\vec{a}$  and  $\vec{b} \vec{c}$ .
- 24. Find the coordinates of points on line  $\frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{2}$  which are at a distance of  $\sqrt{11}$  units from origin.

25. (a) If 
$$y = \sqrt{ax + b}$$
, prove that  $y\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2 = 0$ .

OR

(b) If  $f(x) = \begin{cases} ax + b & ; & 0 < x \le 1 \\ 2x^2 - x & ; & 1 < x < 2 \end{cases}$  is a differentiable function in (0, 2), then find the values of a and b.

#### SECTION - C

This section comprises Short Answer type questions (SA) of 3 marks each.

26. (a) Evaluate 
$$\int_{0}^{\pi/4} \log (1 + \tan x) dx.$$
OR

(b) Find 
$$\int \frac{dx}{\sqrt{\sin^3 x \cos(x-\alpha)}}$$
.

65/2/1  $\sim\sim\sim$  Page 13 P.T.O.

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 



$$27$$
. ज्ञात कीजिए :  $\int e^{\cot^{-1}x} \left( \frac{1-x+x^2}{1+x^2} \right) \mathrm{d}x$ 

3

28. मान ज्ञात कीजिए : 
$$\int\limits_{\log\sqrt{2}} \frac{1}{(\mathrm{e}^x+\mathrm{e}^{-x})\;(\mathrm{e}^x-\mathrm{e}^{-x})}\,\mathrm{d}x$$

3

3

3

29. (a) अवकल समीकरण  $(xy - x^2) dy = y^2 dx$  का व्यापक हल ज्ञात कीजिए।

3

#### अथवा

- (b) अवकल समीकरण  $(x^2+1)\frac{\mathrm{d}y}{\mathrm{d}x}+2xy=\sqrt{x^2+4}$  का व्यापक हल ज्ञात कीजिए।
- एक बर्तन, जिसमें लाल तथा हरी गेंदों की संख्या समान है, से यादृच्छया एक-एक करके 30. (a) प्रतिस्थापना सहित दो गेंदें निकाली जाती हैं। लाल गेंदों की संख्या का प्रायिकता बंटन ज्ञात कीजिए। यादृच्छिक चर का माध्य भी ज्ञात कीजिए।

अथवा

A और B बारी-बारी से एक पासे को उछालते रहते हैं जब तक कि उनमें से कोई एक पासे पर छः प्राप्त कर खेल को जीत नहीं लेता । यदि A खेल को शुरू करे, तो उनके जीतने की क्रमशः प्रायिकता ज्ञात कीजिए।

3

31. निम्न रैखिक प्रोग्रामन समस्या को आलेख से हल कीजिए:

3

व्यवरोधों : 
$$x+2y\leq 120,\,x+y\geq 60,\,x-2y\geq 0,$$
 
$$x\geq 0,\ y\geq 0$$
 के अंतर्गत  $\mathbf{Z}=5x+10y$  का न्यूनतमीकरण कीजिए ।

65/2/1Page 14

**CLICK HERE** 



27. Find 
$$\int e^{\cot^{-1}x} \left( \frac{1 - x + x^2}{1 + x^2} \right) dx$$
.

3

28. Evaluate 
$$\int_{\log \sqrt{2}} \frac{1}{(e^x + e^{-x})(e^x - e^{-x})} dx$$

3

29. (a) Find the general solution of the differential equation:

$$(xy - x^2) dy = y^2 dx.$$

3

OR

(b) Find the general solution of the differential equation:

$$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$

3

30. (a) Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.

3

OR

(b) A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of wining, if A starts the game first.

3

31. Solve the following linear programming problem graphically:

3

Minimize : Z = 5x + 10y

subject to constraints :  $x + 2y \le 120$ ,  $x + y \ge 60$ ,  $x - 2y \ge 0$ ,

$$x \ge 0$$
,  $y \ge 0$ 

65/2/1

2222

Page 15



#### खण्ड – घ

इस खण्ड में दीर्घ-उत्तरीय (LA) प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 5 अंक हैं।

32. (a) यदि  $A=\begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$  तथा  $B=\begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$  हैं, तो AB ज्ञात कीजिए तथा

इसके प्रयोग से निम्न समीकरण निकाय को हल कीजिए:

$$x - 2y = 3$$
  
 $2x - y - z = 2$   
 $-2y + z = 3$ 
5

अथवा

- (b) यदि  $f(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$  है, तो सिद्ध कीजिए कि  $f(\alpha) \cdot f(-\beta) = f(\alpha \beta)$
- 33. (a) समांतर चतुर्भुज PQRS जिसके शीर्ष P(4, 2, -6), Q(5, -3, 1), R(12, 4, 5) तथा S(11, 9, -2) हैं, के विकर्णों के समीकरण ज्ञात कीजिए तथा इनके प्रयोग से विकर्णों का प्रतिच्छेदन बिंदु ज्ञात कीजिए ।

#### अथवा

- (b) बिंदु (-1, 3, -2) से होकर जाने वाली तथा दोनों रेखाओं  $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$  तथा  $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$  के लंबवत, एक रेखा l का सदिश समीकरण ज्ञात कीजिए । अतः इस रेखा की मूल बिंदु से दूरी ज्ञात कीजिए ।
- 34. समाकलन के प्रयोग से रेखा  $y = \sqrt{3}x$ , वक्र  $y = \sqrt{4 x^2}$  तथा प्रथम चतुर्थांश में y-अक्ष द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
- 35. एक फलन  $f: [-4, 4] \to [0, 4], \ f(x) = \sqrt{16 x^2}$  द्वारा प्रदत्त है । दर्शाइए कि f एक आच्छादक फलन है, परन्तु एकैकी फलन नहीं है । इसके अतिरिक्त 'a' के वह सभी मान ज्ञात कीजिए जिनके लिए  $f(a) = \sqrt{7}$  है ।

65/2/1 ~~~ Page 16



5

5



#### SECTION - D

This section comprises Long Answer type questions (LA) of 5 marks each.

32. (a) If  $A = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$ , then find AB and use it to

solve the following system of equations:

$$x - 2y = 3$$
  
 $2x - y - z = 2$   
 $-2y + z = 3$  5

OR

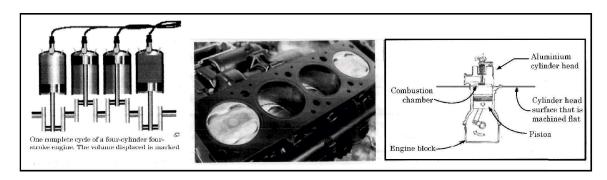
(b) If 
$$f(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, prove that  $f(\alpha) \cdot f(-\beta) = f(\alpha - \beta)$  5

33. (a) Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, -6), Q(5, -3, 1), R(12, 4, 5) and S(11, 9, -2). Use these equations to find the point of intersection of diagonals.

OR

- (b) A line l passes through point (-1, 3, -2) and is perpendicular to both the lines  $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$  and  $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$ . Find the vector equation of the line l. Hence, obtain its distance from origin.
- 34. Using integration, find the area of region bounded by line  $y = \sqrt{3}x$ , the curve  $y = \sqrt{4 x^2}$  and y-axis in first quadrant.
- 35. A function f:  $[-4, 4] \rightarrow [0, 4]$  is given by  $f(x) = \sqrt{16 x^2}$ . Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which  $f(a) = \sqrt{7}$ .

65/2/1  $\sim \sim \sim$  Page 17 P.T.O.






#### खण्ड - ङ

इस खण्ड में 3 प्रकरण अध्ययन/केस/अनुच्छेद/एकीकृत इकाइयाँ मूल्यांकन आधारित प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।

36. एक पिस्टन इंजन में पिस्टनों के द्वारा बेलन में विस्थापित आयतन की माप को इंजन-विस्थापन कहा जाता है, जहाँ पिस्टन, बेलन के छिद्र में गित करता है।



 $75~\pi~{
m cm}^2$  क्षेत्रफल की धातु की शीट से, एक ऊपर से खुला वृत्तीय बेलन बनाया जाता है, जो बेलन के छिद्र का कार्य करता है।

उपरोक्त के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

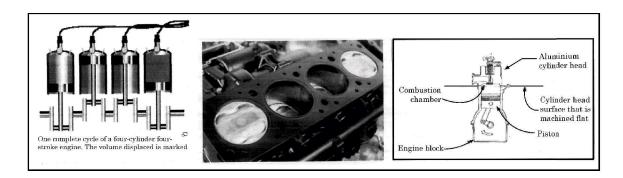
- (i) यदि बेलन की त्रिज्या  ${f r}$  cm तथा ऊँचाई  ${f h}$  cm है तो बेलन के छिद्र के आयतन  ${f V}$  को  ${f r}$  में व्यक्त कीजिए ।
- $({
  m ii}) \quad {{
  m dV} \over {
  m dr}}$  ज्ञात कीजिए ।
- (iii) (a) बेलन की वह त्रिज्या ज्ञात कीजिए जब इसका आयतन अधिकतम हो।

### अथवा

(b) बताइए कि अधिकतम आयतन के लिए, h>r एक सत्य कथन है अथवा नहीं । अपने उत्तर का औचित्य दीजिए।

SECTION – E  $65/2/1 \qquad \sim \sim \sim \qquad \text{Page } 18$ 




1

 $\mathbf{2}$ 



This section comprises 3 source based/case-based/passage based/integrated units of assessment questions of 4 marks each.

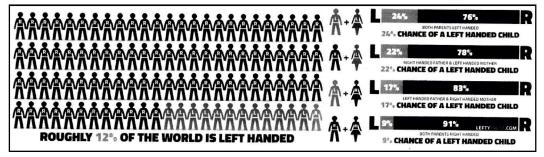
36. Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore



The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area  $75\pi$  cm<sup>2</sup>.

Based on the above information, answer the following questions:

- (i) If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r.
- (ii) Find  $\frac{dV}{dr}$ .
- (iii) (a) Find the radius of cylinder when its volume is maximum. 2


OR

- (b) For maximum volume, h > r. State true or false and justify. 2
- 37. आधुनिक अध्ययन यह सुझाते हैं कि दुनिया की आबादी में लगभग 12% लोग वामहस्तिक हैं।

65/2/1 Page 19 P.T.O.







माता-पिता पर निर्भर करते हुए, बच्चे के वामहस्तिक होने के संयोग निम्न हैं:

जब पिता तथा माता दोनों वामहस्तिक हों : वामहस्तिक बच्चे के संयोग 24% हैं।

जब पिता दक्षिणहस्तिक तथा माता वामहस्तिक हो : वामहस्तिक बच्चे के संयोग 22% हैं।

C: जब पिता वामहस्तिक तथा माता दक्षिणहस्तिक हो: वामहस्तिक बच्चे के संयोग 17% हैं।

जब पिता व माता दोनों दक्षिणहस्तिक हों : वामहस्तिक बच्चे के संयोग 9% हैं।

यह मानते हुए कि  $P(A) = P(B) = P(C) = P(D) = \frac{1}{4}$  है तथा L उस घटना को दर्शाता है जहाँ बच्चा वामहस्तिक हो।

उपरोक्त के आधार पर निम्न ज्ञात कीजिए :

ज्ञात कीजिए : P(L/C)

1

(ii) ज्ञात कीजिए :  $P(\overline{L}/A)$ 

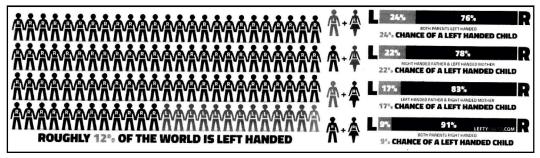
1

ज्ञात कीजिए : P(A/L) (iii) (a)

2

#### अथवा

प्रायिकता ज्ञात कीजिए कि एक यादृच्छया चुना गया बच्चा वामहस्तिक है जबिक दिया है माता-पिता में से मात्र एक वामहस्तिक है।


 $\mathbf{2}$ 

Recent studies suggest that roughly 12% of the world population is left handed.

65/2/1







Depending upon the parents, the chances of having a left handed child are as follows:

A : When both father and mother are left handed:

Chances of left handed child is 24%.

B: When father is right handed and mother is left handed:

Chances of left handed child is 22%.

C: When father is left handed and mother is right handed:

Chances of left handed child is 17%.

D: When both father and mother are right handed:

Chances of left handed child is 9%.

Assuming that  $P(A) = P(B) = P(C) = P(D) = \frac{1}{4}$  and L denotes the event that child is left handed.

Based on the above information, answer the following questions:

(i) Find P(L/C) 1

(ii) Find  $P(\overline{L}/A)$ 

(iii) (a) Find P(A/L) 2

OR

(b) Find the probability that a randomly selected child is left handed given that exactly one of the parents is left handed. 2

38. विद्युत वाहनों का प्रयोग अंत में वायु प्रदूषण पर नियंत्रण कर लेगा।

65/2/1  $\sim \sim \sim$  Page 21 P.T.O.







विद्युत वाहनों का प्रयोग प्रति वर्ष बढ़ रहा है । किसी समय t पर प्रयोग में आ रहे विद्युत वाहनों का आकलन निम्न फलन V द्वारा दिया गया है :

$$V(t) = \frac{1}{5} t^3 - \frac{5}{2} t^2 + 25 t - 2$$

जहाँ t समय को निरूपित करता है तथा  $t=1,\,2,\,3...$  क्रमशः वर्षों  $2001,\,2002,\,2003,\,...$ से संगत हैं।

उपरोक्त के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

- क्या वर्ष 2000 में प्रयोग हो रहे विद्युत वाहनों के आकलन में उपरोक्त फलन का प्रयोग किया जा सकता है ? औचित्य दीजिए।
- सिद्ध कीजिए कि प्रदत्त फलन  $\mathrm{V}(\mathrm{t})$  एक वर्धमान फलन है।  $\mathbf{2}$

65/2/1



Page 22



 $\mathbf{2}$ 



38. The use of electric vehicles will curb air pollution in the long run.



The use of electric vehicles is increasing every year and estimated electric vehicles in use at any time t is given by the function V:

$$V(t) = \frac{1}{5}t^3 - \frac{5}{2}t^2 + 25t - 2$$

where t represents the time and t = 1, 2, 3... corresponds to year 2001, 2002, 2003, ..... respectively.

Based on the above information, answer the following questions:

- (i) Can the above function be used to estimate number of vehicles in the year 2000? Justify.
- (ii) Prove that the function V(t) is an increasing function. 2

65/2/1

~~~

Page 23

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)

Senior School Certificate Examination, 2023 MATHEMATICS PAPER CODE 65/2/1

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession. To
	avoid mistakes, it is requested that before starting evaluation, you must read and understand
	the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is valeted to the confidentiality of the

- 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them.
- The Marking scheme carries only suggested value points for the answers.

 These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (✓) while evaluating which gives the impression that answer is correct, and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9 In Q1-Q20, if a candidate attempts the question more than once (without canceling the previous attempt), marks shall be awarded for the first attempt only and the other answer scored out with a note "Extra Question".
- In Q21-Q38, if a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- A full scale of marks _____ (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) must be used. Please do not hesitate to award full marks if the answer deserves it.
- Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

- Ensure that you do not make the following common types of errors committed by the Examiner in the past: -
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on an answer.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying/not same.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0) Marks.
- Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 17 The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
- 18 Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 65/2/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

Q.No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A (Question nos. 1 to 18 are Multiple choice Questions comming 1 month each)	
	(Question nos. 1 to 18 are Multiple choice Questions carrying 1 mark each)	
1.	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then A^{2023} is equal to	
	(A) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 2023 \\ 0 & 0 \end{bmatrix}$	
	(C) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 2023 & 0 \\ 0 & 2023 \end{bmatrix}$	
Ans	$(C)\begin{bmatrix}0&0\\0&0\end{bmatrix}$	1
2.	If $\begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix}$ = P + Q, where P is a symmetric and Q is a skew symmetric matrix, then Q is equal to	
	(A) $\begin{bmatrix} 2 & 5/2 \\ 5/2 & 4 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix}$	
	(C) $\begin{bmatrix} 0 & 5/2 \\ -5/2 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & -5/2 \\ 5/2 & 4 \end{bmatrix}$	
Ans	$(\mathbf{B}) \begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix}$	1
3.	If $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1 \end{bmatrix}$ is non-singular matrix and $a \in A$, then the set A is	
	(A) ℝ (B) {0}	
	(C) $\{4\}$ (D) $\mathbb{R} - \{4\}$	
Ans	(D) ℝ −{4}	1
4.	If $ A = kA $, where A is a square matrix of order 2, then sum of all possible values of k is	
	(A) 1 (B) -1	
	(C) 2 (D) 0	

Ans	(D) 0	1
5.	If $\frac{d}{dx}[f(x)] = ax + b$ and $f(0) = 0$, then $f(x)$ is equal to	
	(A) $a + b$ (B) $\frac{ax^2}{2} + bx$ (C) $\frac{ax^2}{2} + bx + c$ (D) b	
	(C) $\frac{ax^2}{2} + bx + c$ (D) b	
Ans	$(B) \frac{ax^2}{2} + bx$	1
6.	Degree of the differential equation $\sin x + \cos \left(\frac{dy}{dx}\right) = y^2$ is	
	(A) 2 (B) 1	
	(C) not defined (D) 0	
Ans	(C) not defined	1
7.	The integrating factor of the differential equation $ (1 - y^2) \frac{dx}{dy} + yx = ay, (-1 < y < 1) \text{ is } $	
	(A) $\frac{1}{y^2 - 1}$ (B) $\frac{1}{\sqrt{y^2 - 1}}$	
	(C) $\frac{1}{1-y^2}$ (D) $\frac{1}{\sqrt{1-y^2}}$	
Ans	$(D) \frac{1}{\sqrt{1-y^2}}$	1
8.	Unit vector along \overrightarrow{PQ} , where coordinates of P and Q respectively are $(2, 1, -1)$ and $(4, 4, -7)$, is	
	(A) $2\hat{i} + 3\hat{j} - 6\hat{k}$ (B) $-2\hat{i} - 3\hat{j} + 6\hat{k}$	
	(A) $2\hat{i} + 3\hat{j} - 6\hat{k}$ (B) $-2\hat{i} - 3\hat{j} + 6\hat{k}$ (C) $\frac{-2\hat{i}}{7} - \frac{3\hat{j}}{7} + \frac{6\hat{k}}{7}$ (D) $\frac{2\hat{i}}{7} + \frac{3\hat{j}}{7} - \frac{6\hat{k}}{7}$	
Ans	(D) $\frac{2\hat{i}}{7} + \frac{3\hat{j}}{7} - \frac{6\hat{k}}{7}$	1

9.	Position vector of the mid-point of line segment AB is $3\hat{i} + 2\hat{j} - 3\hat{k}$. If	
	position vector of the point A is $2\hat{i} + 3\hat{j} - 4\hat{k}$, then position vector of the	
	point B is	
	(A) $\frac{5\hat{i}}{2} + \frac{5\hat{j}}{2} - \frac{7\hat{k}}{2}$ (B) $4\hat{i} + \hat{j} - 2\hat{k}$	
	(C) $5\hat{i} + 5\hat{j} - 7\hat{k}$ (D) $\frac{\hat{i}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{2}$	
Ans	(B) $4\hat{i} + \hat{j} - 2\hat{k}$	1
1.0		
10.	Projection of vector $2\hat{i} + 3\hat{j}$ on the vector $3\hat{i} - 2\hat{j}$ is	
	(A) 0 (B) 12	
	(C) $\frac{12}{\sqrt{13}}$ (D) $\frac{-12}{\sqrt{13}}$	
	$\sqrt{13}$	
Ans	(A) 0	1
11	Equation of a line passing through point (1, 1, 1) and parallel to z-axis is	
11.		
	(A) $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$ (B) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$	
	(C) $\frac{x}{0} = \frac{y}{0} = \frac{z-1}{1}$ (D) $\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{1}$	
	(0) 0 0 1 $(D) 0 0 1$	
Ans	(D) $\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{1}$	1
	$(D) \frac{1}{0} = \frac{1}{0} = \frac{1}{1}$	1
12.	If the sum of numbers obtained on throwing a pair of dice is 9, then the	
12.	probability that number obtained on one of the dice is 4, is:	
	(A) $\frac{1}{9}$ (B) $\frac{4}{9}$	
	(A) 9	
	(C) $\frac{1}{18}$ (D) $\frac{1}{2}$	
	18 2	
Ans	(D) $\frac{1}{2}$	1
	2	1
13.	Anti-derivative of $\frac{\tan x - 1}{\tan x + 1}$ with respect to x is	
10.	Anti-derivative of $\frac{1}{1-x}$ with respect to x is	

(A) $\sec^2\left(\frac{\pi}{4} - x\right) + c$ (B) $-\sec^2\left(\frac{\pi}{4} - x\right) + c$ (C) $\log\left|\sec\left(\frac{\pi}{4} - x\right)\right| + c$ (D) $-\log\left|\sec\left(\frac{\pi}{4} - x\right)\right| + c$

Ans	$ C \log \left \sec \left(\frac{\pi}{4} - \mathbf{x} \right) \right + c$	1
	$ C \log \sec \left(\frac{1}{4} - x\right) + c$	1
14.	If (a, b), (c, d) and (e, f) are the vertices of $\triangle ABC$ and $\triangle \Delta BC$ and $\triangle DC$ denotes the area of	
	$\triangle ABC$, then $\begin{vmatrix} a & c & e \\ b & d & f \\ 1 & 1 & 1 \end{vmatrix}$ is equal to	
	(A) $2\Delta^2$ (B) $4\Delta^2$	
	(C) 2Δ (D) 4Δ	
Ans	(B) $4\Delta^2$	1
15.	The function $f(x) = x x $ is	
	(A) continuous and differentiable at $x = 0$.	
	(B) continuous but not differentiable at $x = 0$.	
	(C) differentiable but not continuous at $x = 0$.	
	(D) neither differentiable nor continuous at $x = 0$.	
Ans	(A) continuous and differentiable at $x=0$	1
16.	If $\tan\left(\frac{x+y}{x-y}\right) = k$, then $\frac{dy}{dx}$ is equal to	
	(A) $\frac{-y}{x}$ (B) $\frac{y}{x}$ (C) $\sec^2\left(\frac{y}{x}\right)$ (D) $-\sec^2\left(\frac{y}{x}\right)$	
	(C) $\sec^2\left(\frac{y}{x}\right)$ (D) $-\sec^2\left(\frac{y}{x}\right)$	
Ans	(B) $\frac{y}{x}$	1
17.	The objective function $Z = ax + by$ of an LPP has maximum value 42 at (4, 6) and minimum value 19 at (3, 2). Which of the following is true? (A) $a = 9, b = 1$ (B) $a = 5, b = 2$	
	(C) $a = 3, b = 5$ (D) $a = 5, b = 3$	
Ans	(C) $a = 3, b = 5$	1
18.	The corner points of the feasible region of a linear programming problem	
	are $(0, 4)$, $(8, 0)$ and $\left(\frac{20}{3}, \frac{4}{3}\right)$. If $Z = 30x + 24y$ is the objective function, then	
	(maximum value of Z – minimum value of Z) is equal to	
	(A) 40 (B) 96	
	(C) 120 (D) 136	

Ans	Civa 1 Mark to those who have attempted as the correct entian is not given	1
Ans	Give 1 Mark to those who have attempted as the correct option is not given (Question Nos. 19 & 20 are Assertion-Reason based questions of 1 mark each)	1
19.	Assertion (A) : Maximum value of $(\cos^{-1} x)^2$ is π^2 .	
	Reason (R) : Range of the principal value branch of $\cos^{-1}x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.	
Ans	(C) (A) is true but (R) is false	1
20.	Assertion (A): If a line makes angles α , β , γ with positive direction of the	
	coordinate axes, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.	
	Reason (R): The sum of squares of the direction cosines of a line is 1.	
Ans	(A) Both (A) and (R) are true and (R) is the correct explanation of (A)	1
	SECTION-B	
	(Question nos. 21 to 25 are very short Answer type questions carrying 2 marks each)	
21.	(a) Evaluate $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\pi\right) + \tan^{-1}(1)$.	
	OR	
	(b) Draw the graph of $\cos^{-1} x$, where $x \in [-1, 0]$. Also, write its range.	
Ans	$\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\pi\right) + \tan^{-1}\left(1\right) = \frac{\pi}{4} + \pi + \frac{\pi}{4}$	11/2
	3π	$\frac{1\frac{1}{2}}{\frac{1}{2}}$
	$=\frac{3\pi}{2}$	$\frac{1}{2}$
	Or	
	Correct Graph	1
	Range: $\left[\frac{\pi}{2},\pi\right]$	1
	B -2 -1 0 1 2 3	
22.	A particle moves along the curve $3y = ax^3 + 1$ such that at a point with	
24.	x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate.	
	Find the value of a.	
Ans	Differentiating equation $3y = ax^3 + 1$ with respect to 'x', $3\frac{dy}{dx} = 3ax^2$	1
	Taking $y = 1$ dy $y = 2$ $y = 3(2) - 3x(1)^2 \rightarrow x = 2$	4
	Taking $x = 1$, $\frac{dy}{dx} = 2$, $3(2) = 3a(1)^2 \Rightarrow a = 2$	1

23.	If \vec{a} , \vec{b} , \vec{c} are three non-zero unequal vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, then	
	find the angle between \vec{a} and $\vec{b} - \vec{c}$.	
	→ /→ \ → → /→ \	1/
Ans	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} \Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = 0 \Rightarrow \vec{a} = \vec{0} ; \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$	1 1/2
	As, $\vec{a} \neq \vec{0}$; $\vec{b} \neq \vec{c}$: the angle between \vec{a} and $\vec{b} - \vec{c}$ is $\frac{\pi}{2}$	1/2
24.	Find the coordinates of points on line $\frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{2}$ which are at a	
	distance of $\sqrt{11}$ units from origin.	
Ans	General point on the curve is $P(k,2k+1,2k-1)$, $k \in \mathbb{R}$	1/2
	$\mathbf{OP} = \sqrt{11} \Rightarrow \mathbf{OP}^2 = 11$	
	$: k^{2} + (2k+1)^{2} + (2k-1)^{2} = 11 \Rightarrow k = \pm 1$	1
	\therefore Coordinates of points are $(1,3,1) & (-1,-1,-3)$	1/2
25.	(a) If $y = \sqrt{ax + b}$, prove that $y\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2 = 0$.	
	OR (b) If $f(x) = \begin{cases} ax + b & ; & 0 < x \le 1 \\ 2x^2 - x & ; & 1 < x < 2 \end{cases}$ is a differentiable function in (0, 2), then find the values of a and b.	
Ans	(a) $y = \sqrt{ax + b} \Rightarrow y^2 = ax + b$	
	Differentiate with respect to 'x', $2y \frac{dy}{dx} = a$	1
	Differentiate with respect to 'x', $2y \frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 0 \Rightarrow y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$	1
	Or	1/
	(b) $f(x)$ is differentiable in $(0,2) \Rightarrow f(x)$ is continuous on $(0,2)$	$\begin{array}{c c} 1/2 \\ 1/2 \\ \end{array}$
	$\Rightarrow f(x) \text{ is continuous at } x = 1 \therefore \lim_{x \to 1^{-}} (ax + b) = \lim_{x \to 1^{+}} (2x^{2} - x) \Rightarrow a + b = 1$	72
	Also, $f(x)$ is differentiable at $x = 1$, \therefore L.H.D. $(x = 1) = R.H.D.(x = 1)$	
	\Rightarrow a = 4(1)-1: a = 3 & b = 1-a = -2	$\frac{1}{2} + \frac{1}{2}$

	CECTION C	
	SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each)
26.	(a) Evaluate $\int_{0}^{\pi/4} \log (1 + \tan x) dx.$ OR	,
	(b) Find $\int \frac{\mathrm{d}x}{\sqrt{\sin^3 x \cos(x - \alpha)}}.$	
Ans	(a) Let $I = \int_{0}^{\pi/4} \log(1 + \tan x) dx$ (i)	
	$\Rightarrow I = \int_{0}^{\pi/4} \log \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) dx = \int_{0}^{\pi/4} \log \left(\frac{2}{1 + \tan x} \right) dx \qquad (ii)$	1
	Add (i) and (ii), $2I = \int_{0}^{\pi/4} \log 2 dx = \log 2 \cdot x \Big]_{0}^{\pi/4} = \frac{\pi}{4} \log 2$	11/2
	$\Rightarrow I = \frac{\pi}{8} \log 2$	1/2
	(b) Let $I = \int \frac{1}{\sqrt{\sin^3 x \cos(x-\alpha)}} dx = \int \frac{\cos ec^2 x}{\sqrt{\sin \alpha + \cos \alpha \cot x}} dx$	1
	Put $\sin \alpha + \cos \alpha \cot x = t \Rightarrow \cos ec^2 x dx = -\frac{1}{\cos \alpha} dt$	1/2
	$\therefore \mathbf{I} = -\int \frac{1}{\cos \alpha \sqrt{t}} dt = -\frac{2\sqrt{t}}{\cos \alpha} + \mathbf{c}$	1
	$\Rightarrow I = -\frac{2}{\cos \alpha} \sqrt{\sin \alpha + \cos \alpha \cot x} + c$	1/2
27.	Find $\int e^{\cot^{-1}x} \left(\frac{1-x+x^2}{1+x^2} \right) dx$.	
Ans	Put $\cot^{-1} x = t$: $x = \cot t$ and $\frac{1}{1+x^2} dx = -dt$	1
	$\therefore \int e^{\cot^{-1}x} \left(\frac{1 - x + x^2}{1 + x^2} \right) dx = -\int e^t \left(1 - \cot t + \cot^2 t \right) dt = \int e^t \left(\cot t - \csc^2 t \right) dt$	1
	$= e^{t} \cot t + c$	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \end{array}$

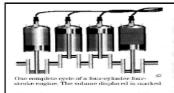
		1
28.	$\log \sqrt{3}$	
	Evaluate $\int_{-\infty}^{\infty} \frac{1}{(e^x + e^{-x})(e^x - e^{-x})} dx$	
	$\log \sqrt{2}$	
Ans	Let $I = \int_{\log \sqrt{2}}^{\log \sqrt{3}} \frac{1}{(e^x + e^{-x})(e^x - e^{-x})} dx = \int_{\log \sqrt{2}}^{\log \sqrt{2}} \frac{e^{2x}}{(e^{2x})^2 - 1} dx$	1
	Put $e^{2x} = t \Rightarrow e^{2x}dx = \frac{1}{2}dt$, Upper limit = 3, Lower Limit = 2	1/2
	$\therefore I = \frac{1}{2} \int_{2}^{3} \frac{1}{t^{2} - 1} dt = \frac{1}{4} \log \left \frac{t - 1}{t + 1} \right \bigg _{2}^{3}$	1
	$\Rightarrow I = \frac{1}{4} \left[\log \frac{2}{4} - \log \frac{1}{3} \right] = \frac{1}{4} \log \frac{3}{2}$	1/2
29.	(a) Find the general solution of the differential equation:	
	$(xy - x^2) dy = y^2 dx.$	
	OR	
	(b) Find the general solution of the differential equation:	
	$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$	
Ans	(a) Given differential equation can be written as	
	$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{\left(\frac{y}{x}\right)^2}{\frac{y}{x} - 1}$	1/
	$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$	1/2
	x Dest en en dy du	1/
	Put $y = ux$, $\frac{dy}{dx} = u + x \frac{du}{dx}$	/2
	$\therefore \mathbf{u} + \mathbf{x} \frac{\mathbf{d}\mathbf{u}}{\mathbf{d}\mathbf{x}} = \frac{\mathbf{u}^2}{\mathbf{u} - 1} \Rightarrow \mathbf{x} \frac{\mathbf{d}\mathbf{u}}{\mathbf{d}\mathbf{x}} = \frac{\mathbf{u}}{\mathbf{u} - 1}$	1/2
	Separating the variables and integrating	
	$\int \left(1 - \frac{1}{u}\right) du = \int \frac{dx}{x} \Rightarrow u - \log u = \log x + c \Rightarrow \frac{y}{x} - \log \frac{y}{x} = \log x + c$	1+ 1/2
	Or Rewriting the given differential equation as:	
	$\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{\sqrt{x^2+4}}{1+x^2}$	1/2
	Integrating factor = $e^{\int \frac{2x}{1+x^2} dx}$ = $e^{\log(1+x^2)}$ = $1+x^2$	1
	∴ solution of the differential equation is	

	$y(1+x^2) = \int \frac{\sqrt{x^2+4}}{1+x^2} \cdot (1+x^2) dx + c$	1/2
	$= \int \sqrt{x^2 + 4} dx + c$	
	$\therefore y(1+x^{2}) = \frac{x\sqrt{x^{2}+4}}{2} + 2\log x+\sqrt{x^{2}+4} + c$	1
30.	(a) Two balls are drawn at random one by one with replacement from an	
	urn containing equal number of red balls and green balls. Find the	
	probability distribution of number of red balls. Also, find the mean of the random variable.	
	OR	
	(b) A and B throw a die alternately till one of them gets a '6' and wins	
	the game. Find their respective probabilities of wining, if A starts the	
	game first.	
Ans	(a) X: Number of red balls out of the two balls drawn	
	$ \begin{array}{c ccccc} X & 0 & 1 & 2 \\ \hline P(X) & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{array} $	1/ ₂ 11/ ₂
	∴ Mean = $0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$ Or	1
	(b) P(getting a six) = $\frac{1}{6}$; P(not getting a six) = $\frac{5}{6}$	$\frac{1}{2} + \frac{1}{2}$
	$P(A \text{ wins}) = \frac{1}{6} + \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^4 \cdot \frac{1}{6} + \dots = \frac{\frac{1}{6}}{1 - \frac{25}{36}} = \frac{6}{11}$	1½
	$P(B \text{ wins}) = 1 - P(A \text{ wins}) = 1 - \frac{6}{11} = \frac{5}{11}$	1/2
31.	Solve the following linear programming problem graphically : Minimize : $Z = 5x + 10y$	
	subject to constraints: $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$,	
	$x \ge 0, y \ge 0$	

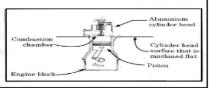
Ans	Correct graph Corner points Value of Z A (40,20)	1
	SECTION-D (Question nos. 32 to 35 are Long Answer type questions carrying 5 marks each)	
32.	(a) If $A = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$, then find AB and use it to solve the following system of equations: $x - 2y = 3$ $2x - y - z = 2$	
	2x - y - z - z $-2y + z = 3$	
	-2y + z = 5 OR	
	(b) If $f(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, prove that $f(\alpha) \cdot f(-\beta) = f(\alpha - \beta)$	
Ans	(a) $AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow B^{-1} = A$	1
	The given system of equations can be written as: $\mathbf{B}^{\mathrm{T}} \cdot \mathbf{X} = \mathbf{C}, \mathbf{X} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$	1/2
	$\mathbf{X} = \left(\mathbf{B}^{\mathrm{T}}\right)^{-1} \cdot \mathbf{C} = \left(\mathbf{B}^{-1}\right)^{\mathrm{T}} \cdot \mathbf{C} = \mathbf{A}^{\mathrm{T}} \cdot \mathbf{C}$	1
	$\Rightarrow X = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$	1/2
	$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \therefore x = 1, y = -1, z = 1$ Or	1

	(b) LHS = $f(\alpha)f(-\beta) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	1
	$= \begin{bmatrix} \cos \alpha \cos \beta + \sin \alpha \sin \beta & \cos \alpha \sin \beta - \sin \alpha \cos \beta & 0 \\ \sin \alpha \cos \beta - \cos \alpha \sin \beta & \sin \alpha \sin \beta + \cos \alpha \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	2
	$= \begin{bmatrix} \cos(\alpha - \beta) & -\sin(\alpha - \beta) & 0 \\ \sin(\alpha - \beta) & \cos(\alpha - \beta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	11/2
	$= f(\alpha - \beta) = RHS$	1/2
33.	(a) Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, -6), Q(5, -3, 1), R(12, 4, 5) and S(11, 9, -2). Use these equations to find the point of intersection of diagonals.	
	OR	
	(b) A line l passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin.	
Ans	Equation of diagonal PR: $\frac{x-4}{8} = \frac{y-2}{2} = \frac{z+6}{11}$	1
	Equation of diagonal QS: $\frac{x-5}{6} = \frac{y+3}{12} = \frac{z-1}{-3}$	1
	General points on PR & QS are $(8k+4,2k+2,11k-6)$ and $(6t+5,12t-3,-3t+1)$ for real numbers 'k' and 't' respectively.	1
	For point of intersection of PR and QS: $8k+4=6t+5$, $2k+2=12t-3$	1/2
	Solving, we get $k = \frac{1}{2}$, $t = \frac{1}{2}$. The point of intersection is $\left(8, 3, -\frac{1}{2}\right)$	1 1/2
	Or	
	(b) Let direction ratios of the required line be a, b, c Since it is perpendicular to the two given lines, $a+2b+3c=0$; $-3a+2b+5c=0$ Solving together, $a=4k$, $b=-14k$, $c=8k$	1 1
	$\therefore \text{ Equation of line is: } \frac{x+1}{4k} = \frac{y-3}{-14k} = \frac{z+2}{8k} \Rightarrow \frac{x+1}{2} = \frac{y-3}{-7} = \frac{z+2}{4}$ $\text{Vector equation: } \vec{r} = -\hat{i} + 3\hat{j} - 2\hat{k} + \lambda \left(2\hat{i} - 7\hat{j} + 4\hat{k}\right)$	1

	Distance from origin = $\frac{\left \left(-\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 2\hat{\mathbf{k}} \right) \times \left(2\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \right) \right }{\left 2\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \right } = \frac{\left -2\hat{\mathbf{i}} + \hat{\mathbf{k}} \right }{\left 2\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \right } = \frac{\sqrt{5}}{\sqrt{69}} \text{ or } \sqrt{\frac{5}{69}}$	1
34.	Using integration, find the area of region bounded by line $y = \sqrt{3}x$, the curve $y = \sqrt{4 - x^2}$ and y-axis in first quadrant.	
Ans	Correct Figure	1
	$y = \sqrt{4-x^2}$ B $y = \sqrt{3}x$ Shaded region	1/2
	Point of intersection at $x = 1$	1/2
	$ ar(OAB) = \int_{0.5}^{1} \sqrt{4 - x^2} dx - \int_{0.5}^{1} \sqrt{3x} dx $	11/2
	/··· yı	-/2
	$= \left(\frac{x\sqrt{4-x^2}}{2} + 2\sin^{-1}\left(\frac{x}{2}\right)\right) \Big]_0^1 - \frac{\sqrt{3}}{2}x^2\Big]_0^1$	1
	$= \frac{\sqrt{3}}{2} + 2 \times \frac{\pi}{6} - \frac{\sqrt{3}}{2} = \frac{\pi}{3}$	1/2
35.	A function f: $[-4, 4] \rightarrow [0, 4]$ is given by $f(x) = \sqrt{16 - x^2}$. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which $f(a) = \sqrt{7}$.	
Ans	Onto: Let $y = \sqrt{16 - x^2} \Rightarrow y \ge 0$	1/2
	Squaring we get, $x^2 = 16 - y^2 \Rightarrow x = \pm \sqrt{16 - y^2}$	1/2
	For each $y \in [-4,4]$, 'x' is a real number, $\therefore 0 \le y \le 4 \Rightarrow R_f = [0,4] = Co - domain$	1 1/2
	$\therefore \text{ 'f ' is an onto function.}$	11/2
	One-One: $f(-1) = f(1) = \sqrt{15}$ but $-1 \neq 1$, \therefore 'f' is not a one-one function. $f(a) = \sqrt{7} \Rightarrow \sqrt{16 - a^2} = \sqrt{7} \Rightarrow a = \pm 3$	1/2
	$1(a) - \sqrt{1} \rightarrow \sqrt{10} - a = \sqrt{1} \rightarrow a = \pm 3$	1



SECTION-E


(Question nos. 36 to 38 are source based/case based/passage based/integrated units of assessment questions carrying 4 marks each)

36.

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore

The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm².

Based on the above information, answer the following questions:

- (i) If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r.
- (ii) Find $\frac{dV}{dr}$.
- (iii) (a) Find the radius of cylinder when its volume is maximum.

 \mathbf{OR}

(b) For maximum volume, h > r. State true or false and justify.

Ans

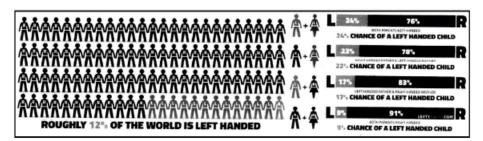
(i)
$$\pi r^2 + 2\pi r h = 75\pi \Rightarrow h = \frac{75 - r^2}{2r}$$
, $\therefore V = \pi r^2 h = \frac{\pi}{2} (75r - r^3)$

(ii)
$$\frac{dV}{dr} = \frac{\pi}{2} \left(75 - 3r^2 \right)$$

(iii)
$$\frac{dV}{dr} = 0 \Rightarrow r = 5, \frac{d^2V}{dr^2} \bigg]_{r=5} = \frac{\pi}{2} (-6r) < 0 : \text{volume is maximum when } r = 5$$

Or

alse,


$$\frac{dV}{dr} = 0 \Rightarrow r = 5, \frac{d^2V}{dr^2} \bigg|_{r=5} = \frac{\pi}{2} (-6r) < 0 : \text{volume is maximum when } r = 5$$

As volume is maximum at
$$r = 5 \Rightarrow h = \frac{75 - 5^2}{2(5)} = 5 \Rightarrow h = r$$

1

37. Recent studies suggest that roughly 12% of the world population is left handed.

Depending upon the parents, the chances of having a left handed child are as follows:

 $\boldsymbol{A}\;$: $\;$ When both father and mother are left handed :

Chances of left handed child is 24%.

B: When father is right handed and mother is left handed:

Chances of left handed child is 22%.

C : When father is left handed and mother is right handed :

Chances of left handed child is 17%.

D: When both father and mother are right handed:

Chances of left handed child is 9%.

Assuming that $P(A) = P(B) = P(C) = P(D) = \frac{1}{4}$ and L denotes the event that child is left handed.

Based on the above information, answer the following questions:

- (i) Find P(L/C)
- (ii) Find P(L/A)
- (iii) (a) Find P(A/L)

OR

(b) Find the probability that a randomly selected child is left handed given that exactly one of the parents is left handed.

(i)
$$P(L \mid C) = \frac{17}{100}$$

1

(ii)
$$P(\bar{L} | A) = 1 - P(L | A) = 1 - \frac{24}{100} = \frac{76}{100} \text{ or } \frac{19}{25}$$

(iii)
$$P(A|L) = \frac{\frac{1}{4} \times \frac{24}{100}}{\frac{1}{4} \times \frac{24}{100} + \frac{1}{4} \times \frac{22}{100} + \frac{1}{4} \times \frac{17}{100} + \frac{1}{4} \times \frac{9}{100}} = \frac{24}{72} = \frac{1}{3}$$

Or

Probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed.

$$= P(L \mid B \cup C) = \frac{22}{100} + \frac{17}{100} = \frac{39}{100}$$

2

38. The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and estimated electric vehicles in use at any time t is given by the function V:

$$V(t) = \frac{1}{5} t^3 - \frac{5}{2} t^2 + 25t - 2$$

where t represents the time and t = 1, 2, 3... corresponds to year 2001, 2002, 2003, respectively.

Based on the above information, answer the following questions:

- (i) Can the above function be used to estimate number of vehicles in the year 2000? Justify.
- (ii) Prove that the function V(t) is an increasing function.

Ans	(i) For the year 2000, $t = 0 & V(0) = -2$ and the number of vehicles cannot be negative	2
	∴ the given function V(t) cannot be used.	
	(ii) $V'(t) = \frac{3}{5}t^2 - 5t + 25 = \frac{3}{5}\left[\left(t - \frac{25}{6}\right)^2 + \frac{875}{36}\right] > 0$, :: V(t) is an increasing function.	2

